Obstacle problem for von Kármán equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Contact Problem for Viscoelastic von Kármán-Donnell Shells

We deal with initial-boundary value problems describing vertical vibrations of viscoelastic von Kármán-Donnell shells with a rigid inner obstacle. The short memory (Kelvin-Voigt) material is considered. A weak formulation of the problem is in the form of the hyperbolic variational inequality. We solve the problem using the penalization method.

متن کامل

A remark on constrained von Kármán theories.

We derive the Euler-Lagrange equation corresponding to 'non-Euclidean' convex constrained von Kármán theories.

متن کامل

Superfluid high REynolds von Kármán experiment.

The Superfluid High REynolds von Kármán experiment facility exploits the capacities of a high cooling power refrigerator (400 W at 1.8 K) for a large dimension von Kármán flow (inner diameter 0.78 m), which can work with gaseous or subcooled liquid (He-I or He-II) from room temperature down to 1.6 K. The flow is produced between two counter-rotating or co-rotating disks. The large size of the e...

متن کامل

Solvability of Dynamic Contact Problems for Elastic von Kármán Plates

The existence of solutions is proved for unilateral dynamic contact problems of elastic von Kármán plates. Boundary conditions for a free and clamped plate are considered.

متن کامل

The obstacle problem for a class of hypoelliptic ultraparabolic equations

We prove that the obstacle problem for a non-uniformly parabolic operator of Kolmogorov type, with Cauchy (or Cauchy-Dirichlet) boundary conditions, has a unique strong solution u. We also show that u is a solution in the viscosity sense.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 1992

ISSN: 0196-8858

DOI: 10.1016/0196-8858(92)90005-h